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Power series in the past played a minor role in the numerical solutions of ordi- 
nary and partial differential equations. There have been good reasons. It is often 
difficult to operate with power series. Finding the series expansion of 

=x F (x, do 
.. 
* dk 

can be arduous. Furthermore if the series can be found, often it will converge in too 
small a region. There are, however, certain advantages which make their use de- 
sirable. A truncated series forms a closed approximation of the solution which can 
be evaluated at any point in the region where the series converges. Instability, which 
causes difficulties for finite difference solutions, does not affect the power series 
solutions. The series solution, with its great accuracy, permits study of the analytic 
properties of the solution to an extent which is unachievable with a finite difference 
solution; and the series solution can be used as an intermediate result which can be 
integrated and differentiated easily. If a finite difference solution is only an inter- 
mediate step iil the solution of a problem, computer storage problems can be a major 
concern. Derivatives and interpolated values of the difference solution can be very 
unreliable. In this paper we intend to show how many of the disadvantages of power 
series can be overcome by automatic coding procedures and to indicate some of 
their useful properties and results. 

In this paper we use the convention that a sum is zero if the upper limit is less 
than the lower. 

Let P(I) denote the coefficient of x' 1 in the polynomial P(x) = EJ= x 
and let Q(I, J) denote the coefficient of x'1lyJ-l in the polynomial Q(x, y) = 

N 
=1 EN 1 Qu7 i)XI-1 J-1 

The following formulas for integration and differentiation are well known: 
If Q(x, y) = fA P(x, y) dx or R(x, y) = ' P(x, y) dy then 

Q(I, J) = P(I - 1, J)/(I - 1) and R(I, J) = P(I, J - 1)J(J - 1). 

If Q(x, y) = OP(x, y)/dx or R(x, y) = dP(x, y)/dy then 

Q(I, J) = I.P(I + 1, J) and R(I, J) = J.P(I, J + 1). 

The formulas for multiplication and division are as follows: 
If R(x, y) = P(x, y) .Q(x, y) then 

I J 

R(I, J) = E ZP(L, M)Q(I - L + 1, J - M + 1). 
L=1 M=1 

If R(x, y) = P(x, y)/Q(x, y) then 
/ ~~I-1 J 

R (IJ) 1 P(I, J) - E Z R(K, L)Q(I - K + 1, J - L + 1) 
J-1\ 

-E R(I, L)Q(1, J - L + 1)). 
L=1 

They have been used in machine calculations by R. D. Richtmyer [1]. 

Received March 22, 1965. 

46 



METHODS AND APPLICATIONS OF POWER SERIES 47 

The formula for inverting a power series is available in many calculus texts: 
If Q = Q(1) + ZK=2Q(K)(P -P())K1 and P = P(1) + Z=2 P(J) 

(Q - Q(1)) J- then 
K-1 

P(2) = 1/Q(2) and P(K) = -ZP(I)(Q - Q(1))K'/Q(2)Kl 
I=2 

where (Q - Q(1))VK1 is the coefficient of (P - P(l))K-1 in the expansion of 
(Q - Q(1))' (K = 3, 4, * * .). The expansion of (Q - Q(1))' can be found by 
using the multiplication algorithm or by the formula for finding a power of a poly- 
nomial (see below). 

The next set of formulas is for determining the expansions of functions of a func- 
tion in two variables, R(x, y) = P(Q(x, y)). If A is the region of radius r where P 
converges, then the expansion R is a valid representation of P(Q) in the region 
where Q converges and I Q ? < r. The algorithms, A, B, C, and D, below, were de- 
rived by using Leibnitz' rule of differentiation. 

A. If 
(1) Q(x, y ) = P(x, y)Z where z is any positive or negative real number then 
(2) aQ/dy = zQ(dP/dy)/P or 
(3) PaQ/ay = zQaP/ay. 

Applying the differential operators DX and DV which stand for d/dx and a/&y re- 
spectively, we find: 

(4) Dyj-l(PRQ/Oy) = DJ-(zQaP/dy) and 
(5) D,-1Dy-l' (FPaQ/ ax) = DxI'D-' ( zQdP/d x). 

We apply Leibnitz' rule of differentiation to (4) and (5) and express the derivatives 
in terms of the coefficients: 

(1') Q(1, 1) = P(1, 1)z, 

Q(1, J + 1)- (= L(Z +1) -J 
L=1J 

(2') Q(1, J + 1- L)P(1, L + 1))jP(1, 1) 

(J = 1,2, * ,N- 1), 

Q(I + 1, J) = (sum 1 + sum 2)/P(1,1) 

(I = 1, 2, ** ,N- 1,J = 1, 2, * *N),, 

sum 1 = zP(I + 1, l)Q(l, J) 

(3' 
J-1 

(3 ) ~~+ E (zP(I + 1, L + l)Q(l,J -L) 
L=1 

- P(1, L + 1)Q(I + 1, J - L)), 

su 2 eLZ+ )- Q(I - L+ 1, J -K)P(L + 1, K+ 1)- 
L=1 K=O I 

The formulas (1') and (2') serve as the algorithms for finding the coefficients of 
the power of a series in one variable. 

B. If 
(1) Q(x, y) = exp(P(x, y)) then 
(2) aQ/Oy = QaP/dy and 
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(3) Dyj 'aQ/ay = DYJ 1(Qaplay), J = 1, ... , N - 1, 
(4) Dx1'1DyJ laQ/ax = D'-'Dyj-l'(QdP/dx), I = 1, * * *, N - 1; J = 1,*I* N 

In terms of the coefficients these equations become: 
(1') Q(1, 1) = exp(P(1, 1)), 
(2') Q(1, J + 1) = (1/J)EJA'o (L + 1)P(1, L + 2)Q(1, J - L), J = 

L, 
( N-1) I-1 J-1 

(3') Q(I + 1, J) = (1/I) Z _ (K + 1)P(K + 2, L + 1) 
K=O L=O 

*Q(I -K, J-L), I=1,***,N-1; J =1,**,A. 
C. If 
(1) Q(x, y) = log(P(x, y)) then 
(2) dQ/dy = (dP/dy)/P and 
(3) Dy _(PaQ/ay) - Dv dP/dy, 
(4) Dx''1D J-'(PdQ/dx) -D,1'D21dP/dx. 

Again, using Liebnitz' rule of differentiation and rearranging terms, we find that 
the formulas for the coefficients are: 

(1') Q(1, 1) = log(P(l, 1)), 
(2') Q(1, J + 1) - (P(1, J + 1) - (1/J)ZK-'h (J - K)Q(1, J - K + 1) 

P(1, K + 1))/P(l, 1), J = 1, , N - 1, 
J-J 

Q(I + 1, J) = (P(I + 1, J) - Z P(1, L + l)Q(I + 1, J - L) 
L=1 

1-1 J-1 

(3') -(1/I) E (1 - K)P(K + 1,L + 1)Q(I - K + 1, J - L))/P(l, 1) 
R=1 L=O 

K= 1, ,N-1J 

D. The sine and cosine of a series are found by: If 
(1) Q(x, y) = sin(P(x, y)), R(x, y) = cos(P(x, y)) then 
(2) dQ/dy RdP/dy, dR/dy = -QaP/dy and 
(3) Dy, ''Q/dy = Dv'1(RdP/dy), D,1-1dR/dy = Dy'-1(-QaP/dy), 
(4) DxJ-1D -1 aQjax = Dx'-1Dy'_1(RaP/ax), DxJ-'Dy'-1aR/ax = DJ 'DV' 

(-QaP/ax) 
or, in terms of the coefficients we find: 

(1') Q(1, 1) = sin(P(1, 1)), R(1, 1) = cos(P(1, 1)), 
I-] 

Q(1, I + 1) = (1/I)Z (I- K)R(1, K + 1)P(1, I - K + 1), 
K=o 

I-1 

(2') R (1, I + 1) = -(1/) (I -K)Q(1, K + 1)P(1, I -K + 1), 
K=O 

J-1 I-1 

Q(J + 1,1 I) = (1,J) E (J - L)P(J - L + 1, - L) 
[,=O K=O 

(3') *R(L + 1, K + 1), 
J-1 T-1 

RI(J + 1, I) -(1/J) E (J - L)P(J -L + 1,1- L) 
L=O K=O 

*Q(L+1,K+1), J=i, ,N-1;I= 1, ,N. 
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The following formulas for a function of a function depend upon the above 
methods for the evaluation of their coefficients. These algorithms are for series in one 
variable. 

E. The representation of the Bessel Function of order zero can be calculated 
directly, even though the argument is a polynomial: 

N 

Q(x) = Jo(P(X)) _ E2)K ) )2- 
K=o 

Nesting is used to form the sum. The indicated square is formed using the algo- 
rithms A. P is of degree N - 1. It should be noted that the coefficients Q(I) are 
obtained exactly only if P(1) = 0. 

F. The arctangent, arcsine, and arecosine of a series are found directly from their 
classical definitions: 

Q(x) = tan-1(P(x)) = fdPd2 dx, Q(1) = tan-'(P(1)) 

JdP/dx Q(x) = sin (P(x)) = (1 - p2) dx, Q(1) = sin'(P(1)). 

Q(X) =COS-1(P(X)) = zdPldxp do. Q (1 ) = cos-1 (P(1)). 

These expressions are found by using the power, division or multiplication, differ- 
entiation and integration formulas. 

G. The formulas for the Chebyshev, Legendre, Hermite and Laguerre poly- 
nomials as functions of a function are derived from their generating functions (see 
Courant and Hilbert [21): 

If Q(x) = TN(P(x)) where TN is the Chebyshev polynomial of degree N, then 
TIN(P) is the coefficient of yN in the expansion of (1 - .25y2)/(1 - Py + .25y2), 
P is a polynomial in one variable. The division algorithm handles this expression 
easily. 

If Q(x) = LN(P(x)) where LN is the Legendre polynomial of degree N, then 
LN(P) is the coefficient of yN in the expansion of (1 - 2Py + y2)-112. The formulas 
A serve to carry out the indicated square root. 

If Q(x) = HN(P(x)) where Hv is the Hermite polynomial of degree N, then 
HN(P) is the coefficient of YN/N! in exp( _ y2 + 2Py). 

Similarly the Laguerre polynomial LaN(P) is found from the expansion of 
exp(-Py/(1 - y))/(1 - y); it is the coefficient of yN/N!. 

The Jacobi polynomial can be handled in the same manner. 
The above formulas indicate the versatility of the methods. Not only is it possi- 

ble to perform algebraic operations on polynomials, but also the series representation 
of many of the elementary functions can easily be found. If the above formulas are 
used to form R = P(Q) when Q is just the variable x, then the classical expressions 
result. The formula for the Chebyshev polynomials of x yielded To, T1, *.- , T25 in 
about 1 minute on the CDC 1604. These routines, in general, were found to be very 
fast in dealing with compound functions of one variable. 

Power series methods are well suited for initial value problems of ordinary and 
partial differential equations. The Cauchy-Kowalewsky theorem provides the exist- 
euice of and method of finding the solution; it is a power series solution. 
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These methods are also useful for solving second order nonlinear boundary 
value problems of ordinary differential equations. An often used approach to the 
nonlinear boundary value problem is to solve an initial value problem which satis- 
fies the same differential equation. The initial value of the first derivative of the 
solution to the initial value problem is varied until the solution passes through the 
prescribed endpoint of the boundary value problem. That is, if we want to solve: 
d2P/dx2 = f(x, P, P'), P(xo) = Po , P(xi) = Pi, P' = dP/dx, then we would 
guess P'(xo) and solve the initial value problem: d2Pi/dx2 = f(x, pi, pi'), Pi(xo) = 

PO, PI (x0) y'. Pt represents the solution corresponding to the ith guess, y , of 
the initial data P'(xo). The successive guesses yt are chosen by interpolation so that 
LimitiO Pt(x1) = Pi. The disadvantage of this technique is that the solution 
must be recalculated after each interpolation and the sequence Pt(xi) may con- 
verge slowly, if at all, to P1 . 

The following alternative solution is proposed. Consider the following system: 

OP/Ox Q(x, y), P(xo, y) = Po, 

OQ/Ox =f(x, P(x, y), Q(x, y)), Q(xo, y) = y. 

The truncated solution P(x, y) = EN1'=o .w'=o p1jxtyj can be evaluated at xi 
which gives a polynomial in y: 

N N 

P(xi, y) =E E pijxlyj = Pi 
i=O j=O 

The zeroes, Yk, of this equation provide the appropriate initial values of the deriva- 
tive P'(x0) = yk such that EZ~=o Z~j=o pixti yk = Pi and P(x, Yk) satisfies the 
original boundary value problem. 

An important drawback is that series solutions to differential equations may 
converge in too small a region. M. D. Van Dyke [3] discusses why some attempts 
with power series solutions of supersonic flows involving shock waves have failed. 

The first complete solution of one of these problems was presented by G. Lewis 
[4]. He solved the problem of supersonic flow past a blunt body with axial symmetry. 
The shape of the shock wave is assumed and taken as the initial line. The condi- 
tions ahead of the shock are also assumed and the Rankine-Hugoniot conditions 
provide the initial conditions. Thus the problem is expressed as a Cauchy problem. 
However, as M. D. Van Dyke points out, the solution does not converge up to the 
body because of a line of singularities, upstream from the shock, which is closer to 
the initial line than is the body. The problem is expressed as 4 nonlinear partial 
differential equations in 2 variables.1 

G. Lewis has developed and proved the convergence of two methods of analytic 
continuation which he used to extend the solution up to the body. One method is 
simply a reexpansion of the series solution about another point with some extra 
truncation of the new series. The other method of continuation, which is more 
accurate, takes advantage of the flow equations. The initial series are calculated at, 
say, po on the shock and are found to converge in a region including the point pi . 
From the differential equations new series are computed about pi, using the values 

1 Another solution of this problem was given earlier without proof by A. Van Tuyl [6]. 
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at pi of the original series for the initial data. G. Lewis calculated the solution on an 
IBM 704 which is an 8-place machine. He used unnormalized double precision 
arithmetic and obtained a solution with 8-place accuracy. 

The author and Lewis, independently, have recalculated the solution using a 
bilinear mapping to map the line of singularities further away from the body. This 
allowed the body to be reached without the need of analytic continuation. The 
author's calculations were carried out in single precision (10 places) on a CDC 1604. 
The machine has built-in rounding operations. The location of the body agreed to 
7 places with the original calculations of G. Lewis, obtained by analytic continua- 
tion. Consistency checks for the solution obtained by mapping indicated full 10- 
place accuracy all the way up to the -body. The bilinear mapping, used by the 
author, sent the origin (on the shock) into the origin and a point near the body 
into itself. The real line was mapped onto itself, and a parameter was used to maxi- 
mize the accuracy. Accuracy was determined by the 2 consistency checks of the 
problem: 

Bernoulli's Law: 2,yp/(-y - 1)p + u2 + v2 = constant and 

the gas law: p = A(S)p', 

A(S) is constant along a streamline, a is the gas constant, and S is the entropy. 
These equations were available as consistency checks since they were not used in 
the calculation of the flow. 

The calculation of the series through degree 24 took 100-135 seconds. 
These methods were. also used by the author [5] to calculate supersonic flows 

past conical shocks. For this initial value problem there are 5 nonlinear partial dif- 
ferential equations in 2 variables. The calculation was performed on an IBM 7090 
using 8-place single precision significance arithmetic. 7- to 8-place accuracy was 
obtained for the flow where the shock was taken as a right circular cone. The 
general flow, where the cross-section of the shock was taken to be an ellipse, involves 
a singularity. Outside a neighborhood of the singularity 5- to 7-place accuracy 
was achieved. The expansions for the flow variables, pressure, density, and velocity 
were calculated on a constant spherical surface between the shock and the body 
along several radial lines running from the shock to the center of the ellipse. The 
maximum number of analytic continuations necessary to reach the body along any 
radial line was three. Each continuation resulted in the loss of 1 decimal place of 
accuracy. By calculating up to the singularity from different directions it was found 
that the singularity behaves like a branch point. Calculations from separate direc- 
tions gave different results in a neighborhood of the singularity, although they 
agreed in overlapping regions away from the singularity. 

From several points of view power series have shown themselves useful. They 
are not only a computational tool with a high degree of accuracy, but they also pro- 
vide an efficient method for generating polynomial expressions which are important 
in themselves, for example the Chebyshev polynomials. By mapping or analytic 
continuation, power series solutions may be extended into the large. Stability cri- 
teria do not affect power series solutions. The techniques are valid even when the 
equations change type, i.e., from elliptic to hyperbolic as in the case of flow past a 
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blunt body. A power series form of solution is much more compact than a finite 
difference solution, and it allows study of the analytic behavior of the solution. 

University of Minnesota 
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